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Abstract: To alleviate the ill-posedness of bioluminescence tomography (BLT) reconstruction,
anatomical information from computed tomography (CT) or magnetic resonance imaging (MRI)
is usually adopted to improve the reconstruction quality. With the anatomical information,
different organs could be segmented and assigned with appropriate optical parameters, and
the reconstruction could be confined into certain organs. However, image segmentation is a
time-consuming and challenging work, especially for the low-contrast organs. In this paper, we
present a BLT reconstruction method in conjunction with an organ probability map to effectively
incorporate the anatomical information. Instead of using a segmentation with a fixed organ
map, an organ probability map is established by registering the CT image of the mouse to the
statistical mouse atlas with the constraints of the mouse surface and high-contrast organs (bone
and lung). Then the organ probability map of the low-contrast organs, such as the liver and
kidney, is determined automatically. After discretization of the mouse torso, a heterogeneous
model is established as the input for reconstruction, in which the optical parameter of each
node is calculated according to the organ probability map. To take the advantage of the sparse
Bayesian Learning (SBL) method in recovering block sparse signals in inverse problems, which
is common in BLT applications where the target distribution has the characteristic of sparsity and
block structure, a two-step method in conjunction with the organ probability map is presented.
In the first step, a fast sparse algorithm, L1-LS, is used to reveal the source distribution on the
organ level. In the second step, the bioluminescent source is reconstructed on the pixel level
based on the SBL method. Both simulation and in vivo experiments are conducted, and the
results demonstrate that the organ probability map in conjunction with the proposed two-step BLT
reconstruction method is feasible to accurately reconstruct the localization of the bioluminescent
light source.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Bioluminescence tomography (BLT) is a rapidly developing optical molecular imaging modality,
which can be used to monitor physiological processes on molecular and cellular levels [1,2]. BLT
has the advantages of no ionizing radiation, in vivo and high sensitivity, and provides a powerful
tool for tumor monitoring, drug development and disease occurrence mechanism [3–5].

In bioluminescence imaging (BLI), the 2D bioluminescence signal on the tissue surface is
captured directly. However, due to the strong scattering and absorption of biological tissue, the
position of the internal light source cannot be correctly determined by the measurements on
the surface. In contrast, the BLT could show the bioluminescent targets inside the tissue in 3D
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using the light signals (either single or multiple spectral data) measured on the tissue surface
by adopting a sophisticated image reconstruction algorithm. By comparing the predicted light
intensity on the tissue surface with the measured intensity and iteratively updating the unknown
bioluminescent source distribution, the reconstruction algorithm finally reveals the target position
[2,5,6].

The predicted light intensity is determined with a light propagation model which requires
optical properties and the geometry of the animal. The animal’s geometry for modeling light
propagation can be obtained either by using structured light for capturing the animal’s surface or
by other imaging modalities, such as x-ray computed tomography (CT) or magnetic resonance
imaging (MRI) [6–11]. The former approach captures a single view of the animal surface which
leads to a homogeneous model, while the later approach utilizes a CT or MRI volume which
is segmented to organs. Then a heterogeneous model could be built based on the segmented
high-resolution CT or MRI anatomical images with each organ is assigned with appropriated
optical property.

Although the heterogeneous model is more accurate than the homogeneous one in modeling
light propagation for BLT, the organ segmentation is time-consuming and challenging, especially
for the low-contrast CT images. To alleviate the burden of organ segmentation from CT
and facilitate BLT reconstruction, registration based on atlas has been adopted and attained
researcher’s attention [12–15]. Ren et al. [16] presented a registration method to estimate
the organ’s location of the imaged mouse based on multi-atlas. The atlas is constructed using
CT datasets from 50 mice which are manually segmented into different organs respectively.
Compared with single atlas-based registration, the multi-atlas-based registration can reduce
individual variance and get more accurate registration. Recently, Klose et al. [17] proposed a
computer-aided analysis method for BLT reconstruction. They innovated a body-conforming
animal mold to spatially scale the animal, and then using the mouse atlas to register the animal
constrained in the mold. In combination with a pre-solved multispectral light propagation model
of each mold, the in vivo biodistribution of bioluminescent reporters can be rapidly calculated.
The results demonstrated that the BLT in combination with a statistical mouse atlas could facilitate
quantitative analysis of bioluminescence images.

Different from the works of [17], our group have proposed a more general statistical mouse
atlas for organ segmentation which does not need an animal mold. The statistical mouse atlas
was generated from 103 mice [18,19]. In practical, the CT image of the mouse is first registered
to the statistical mouse atlas with the constraints of mouse surface and high-contrast organs
(such as the bone and lung). Then the low-contrast organs, such as the liver and kidney, are
estimated automatically through the statistical mouse atlas model. In our recent work [20], with
the estimated shapes of the organs from the statistical mouse atlas, we have demonstrated the
effectiveness in promoting BLT reconstruction for the multimodality BLT/CT system, and the
results show that the bioluminescent sources imbedded in the liver and lung can be accurately
reconstructed based on the statistical mouse atlas, which is comparative to the reconstruction
result using an accurate organ segmentation.

In this paper we presented a two-step BLT reconstruction method in conjunction with an organ
probability map to incorporate the anatomical information. Different from our previous work
[20], where the shapes of the low-contrast organs are fixed and calculated based on the mean
shape of the statistical mouse atlas, in this paper, the low-contrast organs are estimated as an
organ probability map. The optical property map of the mouse is established by weighting the
optical properties of different organs based on the organ probability map, and it is served as
an input for BLT reconstruction. To take the advantage of sparsity in BLT reconstruction, the
first-step reveals the distribution of the bioluminescent source on the organ level by utilizing a
fast sparse algorithm, L1-LS [21,22]. The sparse Bayesian Learning (SBL) method [23–26]
has the advantage of recovering block sparse signals in inverse problems, which is suitable



Research Article Vol. 13, No. 3 / 1 Mar 2022 / Biomedical Optics Express 1277

for the applications in BLT where the target distribution has the characteristic of sparsity and
block structure. The SBL could get better performance if the block structure knowledge is
known in advance. So, a two-step reconstruction method is proposed, and in the second-step,
the bioluminescent source is reconstructed on the pixel level based on the SBL method with
the initial result from L1-LS. Simulation and in vivo experiments are conducted to evaluate the
feasibility of the proposed method to localize the bioluminescent sources in different organs.

2. Materials and method

2.1. BLT reconstruction

The radiative transfer equation (RTE) has been proved as the most comprehensive model for
describing light transportation in biological tissue. But it is challenging to find the numerical
solution of RTE, especially for the object with irregular shape. So many approximate methods
to the RTE have been developed to overcome the difficulties of solving the RTE. The diffusion
equation (DE) which is the 1st order approximation of the RTE, is widely employed to model
light transportation in biological tissue. However, it is only valid under the condition that the
reduced scattering coefficient is much larger than the absorption coefficient (µs

′/(µs
′ + µa) ≈ 1).

For wavelength shorter than 620nm, the solution of DE is less accurate because the light
absorption becomes stronger (µs

′/(µs
′ + µa)<1) [6]. In this paper, the 3rd order simplified

spherical harmonics function (SP3) to the RTE is used to model light propagation in biological
tissues [6,27,28]. As a high order approximation to the RTE, SP3 can balance the contradiction
between accuracy and computational effort comparing with DE. The steady state SP3 equation is
expressed as follow:⎧⎪⎪⎨⎪⎪⎩

− ∇ · 1
3µa1

∇φ1 + µaφ1 = Q + 2
3 µaφ2

−∇ · 1
7µa3

∇φ2 +
(︂

4
9 µa +

5
9 µa2

)︂
φ2 = − 2

3Q + 2
3 µaφ1

, (1)

where µa is the absorption coefficient, µs is the scattering coefficient, g denotes the isotropic
parameter, µan = µa + µs(1 − gn), and Q is the light source distribution. When the composite
moments φ1 and φ2 are calculated, the photon flux inside tissue φ is given by φ = φ1 −

2
3φ2.

If the source is a point source, then its 3D photon flux distribution can be expressed as Green’s
function Gem(rd, r) = φ1(r) − 2

3φ2(r) using the SP3 method. According to the 1st order Born
approximation, the measurement on the surface point rd can be expressed as

y(rd) = Θ
∫

Gem(rd, r)x(r)d3r, (2)

where Θ is the gain factor related to the system settings, and x(r) is the unknown bioluminescent
source distribution.

Assume the imaged object is discretized into N mesh nodes, and then the optical parameter
of each node is assigned through a heterogeneous optical property map. With an appropriate
boundary condition, the Green’s function of Eq. (1) can be solved by finite element method
(FEM). The linear relationship between the measurements on the object surface, y, and the
unknown bioluminescent source distribution, x, can be established as

y = Wx, (3)

where W represents the system matrix with the size of Nd ×Nv, Nd is the number of measurements
on the surface, and Nv is the number of the discretized nodes. Here, multispectral measurements
are acquired to improve BLT reconstruction, and the relative spectral weights caused by the source
spectrum, filters and the CCD quantum efficiency at different wavelengths are also considered



Research Article Vol. 13, No. 3 / 1 Mar 2022 / Biomedical Optics Express 1278

into Eq. (3). A modified version of the open source NIRFAST software is used to calculate
W [29,30]. Due to the measurements are much fewer than the unknowns (Nd ≪ Nv), the BLT
reconstruction is ill-posed and underdetermined, so it is impossible to solve Eq. (3) directly.

2.2. Statistical shape model

Our group had previously constructed a statistical mouse atlas based on 103 manually segmented
mouse CT images [18–20]. In actual operation, the mouse is first scanned for CT imaging
followed by an automated organ segmentation. The low-contrast organs, such as the liver and
kidneys, can be automatically estimated by registering the high-contrast organs (mouse surface,
lung and bone) to the statistical mouse atlas. Then the estimated organs providing structure
information is used as input for BLT reconstruction.

Different from our previous work [20] where the shapes of the low-contrast organs are
estimated based on the mean value of each organ of the statistical mouse atlas, in this paper, the
low-contrast organs are established as an organ probability map, as shown in Fig. 1. In the organ
probability map, the position far away from the center of the organ has lower probability. The
organ probability map of the mouse is more appropriate for compensating anatomical variations
comparing with the fixed mean shape.

Fig. 1. (a) The organ probability map estimated from the statistical shape model. The
probability distribution of (b) the liver, (c) the right kidney and (d) the soft tissue.

The organ probability map is then translated into an optical property map, including the
absorption coefficient µa and the scattering coefficient µs, which contain the different optical
properties of organs [31,32], as shown in Table 1. The optical property maps of µa(λ) and
µ′s(λ) are built for four wavelengths between 590nm and 650nm with 20 nm interval. With the
relationship µ′s = µs(1 − g), the isotropic parameter g is set to 0.9 in all the simulation and in vivo
experiments, then the scattering coefficient µs could be easily calculated.

The weighted optical parameter of each mesh node is calculated as

µi(λ) =

Nseg∑︂
j

pj
iµ

j
i(λ), (4)

where µj
i(λ) is the optical parameter of the jth organ (j= 1, 2, . . . , Nseg), representing absorption

coefficient µa(λ) or scattering coefficient µs(λ), pj
i is the organ probability of organ j at position I,
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Table 1. Optical parameters of different regions under four wavelengths [31] (mm−1)

Organ
590 nm 610 nm 630 nm 650 nm

µa µ′s µa µ′s µa µ′s µa µ′s

Heart 0.483 1.16 0.094 1.10 0.047 1.05 1.010 0.03

Lungs 1.336 2.33 0.219 2.28 0.105 2.25 0.071 2.21

Liver 2.897 0.77 0.566 0.75 0.283 0.72 0.197 0.70

Kidney 0.541 2.73 0.106 2.60 0.053 2.47 0.037 2.36

Skeleton 0.455 3.01 0.082 2.86 0.040 2.73 0.028 2.61

Soft tissue a 0.033 1.53 0.007 1.46 0.004 1.40 0.003 1.35

aThe µa are chosen from adipose tissue in Ref. [31]. The µ′s are calculated from Eq. (1) and Table 2 in Ref. [32].

and
Nseg∑︁

j
pj

i = 1. The optical property maps were then input to the light propagation model of the

BLT reconstruction.

2.3. Two-step BLT reconstruction

Taking advantage of the organ probability map, here we developed a two-step reconstruction
method for BLT reconstruction. The first step is to calculate the distribution of the bioluminescent
source at organ level. In the second step, a high-resolution solution at voxel level is reconstructed
based on the prior information from the first step using the sparse Bayesian learning method.
The details of the two-step reconstruction method are introduced as follows.

Step 1: BLT reconstruction on organ level. Through registration with the statistical mouse
atlas, as described in Section 2.2, the imaged mouse is segmented into Nseg organs. Then a
segmentation matrix G (Nv ×Nseg) is constructed, where the element Gij is the probability of jth
organ at mesh grid i. Assuming the signal intensities are equivalent inside a specific organ, then
a low dimensional linear equation can be subsequently constructed:

y = W̄x̄, (5)

where W̄ = W · G is the new system matrix with the size of Nd × Nseg, the unknown vector x̄
includes Nseg elements representing the average intensity of the Nseg organs. Equation (5) can be
converted into an optimization problem

min | |W̄x̄ − y| |22 + λ | |x̄| |1, (6)

where λ>0 is the regularization parameter. Here, Eq. (6) is solved using the widespread sparse
based lease square L1-LS algorithm with the constraint of non-negativity. The L1-LS algorithm
is developed based on an interior-point method for L1-resularized least squares problems and is
fast for large sparse problems. Owning to the small dimension of W̄, the solution could be very
fast. Consequently, the solutions for all mesh nodes are obtained through x = Gx̄, and only the
positions with non-zero solutions are selected for the 2ed step.

Step 2: High-resolution BLT reconstruction. In most applications, the bioluminescence source
localizes only a small portion of the whole field of view, i.e., the distribution has the characteristic
of sparsity and block structure. Aiming at this feature, Zhang et al. [33] proposed a sparse
Bayesian learning (SBL) algorithm for recovering block sparse signals. The SBL algorithm
could take advantage of the initial results at organ level reconstructed from the first step. Here,
we adopted the SBL algorithm on the high-resolution BLT reconstruction.
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For the sake of explanation, a brief introduction of SBL is listed as follows [23–25,33]. Assume
the unknowns xi in the i-th organ satisfying a multivariate Gaussian distribution:

p(xi; γi, Bi) ∼ N(0, γiBi), (7)

where γi is a non-negative parameter that control the sparsity of xi,when γi = 0, the corresponding
xi become zero. Bi is a positive definite matrix, representing the correlation between elements in
xi. Assuming that the unknowns xi are mutually independent, then the prior of unknown x in Nk
organs is:

p(x; γi, Bi) ∼ N(0, C0), (8)

where C0 = diag(γ1B1, γ2B2, · · · , γgBg). Bi is an all-one matrix if all elements in xi take the
same value.

Under the assumption that the noise v is a white noise and satisfies p(v; λ) ∼ N(0, λI), where λ
is a positive scalar, the conditional probability is given by

p(y|x; γi, Bi, λ) ∼ N(Wx, λI). (9)

Based on the Bayesian rule, the posterior of x is obtained through

p(x|y; γi, Bi, λ) ∼ N(wx, Cx), (10)

with
wx = C0WT (λI +WC0WT )−1y, (11)

Cx = (C0
−1 +

1
λ

WTW)−1. (12)

When parameters λ, γ and B are estimated, wx can be regarded as an estimation of x.
A type II maximum likelihood is used to estimate the parameters λ, γ and B, which leads to

minimizing the following cost function:

Qnew(λ, γ, B) ∆= 1
λ | |y − Wx| |22 + xTC−1

0 x +
g∑︁

i=1
Tr[(C∗

y)
−1WkBi(Wk)

T
]γi

+ log |C∗
y | −

g∑︁
i=1

Tr[(C∗
y)

−1WkBi(Wk)
T
]γ∗i

, (13)

Taking the derivative of Q with respect to λ, γ and B respectively, the learning rules can be
derived as follows:

γi =

⌜⎷
xT

i B−1
i xi

Tr((Wk)
T
(C∗

y)
−1WkBi)

, (14)

λ =
| |y − Wwx | |

2
2 + Tr(CxWTW)

Ndet ector
, (15)

B =
1
g

g∑︂
i=1

Ck
x + wk

x(wk
x)

T

γi
. (16)

Substitute the estimated parameters into Eq. (10), and we can obtain the estimation of the
solution x. The flow chart of the algorithm is shown in Fig. 2.
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Fig. 2. The flow chart of the two-step method.

2.4. Evaluation parameters

To quantitatively evaluate the performance of the proposed BLT reconstruction method, the
following three parameters have been calculated.

(1) Center of mass (COM) and 3D offset (Doffset) between the reconstructed source and the true
source.

Doffset = [(x − x0)
2 + (y − y0)

2 + (z − z0)
2]1/2, (17)

where (x, y, z) and (x0, y0, z0) are the COM’s coordinates of the reconstructed and the true
sources, respectively. The Doffset represents the position accuracy of reconstruction.

(2) In order to analyze the shape similarity of the reconstructed and the true sources, the Dice
coefficient is calculated. The Dice coefficient is given by:

Dice = 2
A ∩ B
A + B

, (18)

where A and B are the volumes of the reconstructed and true source, respectively. After
reconstruction, the voxels with intensity higher than 10% of the maximum of the intensity
are regarded as the reconstructed volume A. With the known true source volume B in
simulations, the Dice coefficient could be calculated.

(3) Contrast to noise ratio (CNR) is used to evaluated the quality of reconstructed results. Given
a region of interest (ROI), the CNR is defined as follow:

CNR =
µROI − µBCK

(ωROIσ
2
ROI − ωBCKσ

2
BCK)

1/2 , (19)

where µROI and µBCK are the mean intensity values, σ2
ROI and σ2

BCK are the variances,
and ωROI and ωBCK are the weighing factors of the ROI volume and background volume,
respectively. After reconstruction, the reconstructed value is converted to the range of [0,
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1] through normalizing to the maximum value. Then the voxels with intensity higher than
the threshold of 0.1 is regarded as the reconstructed BLT volume. After subtracting the
reconstructed BLT volume, the rest of the volume is regarded as the background volume.
The higher value of CNR indicates better quality of the reconstruction

3. Experiments and results

In order to assess the feasibility of the proposed two-step BLT reconstruction method in conjunction
with the statistical shape model, simulations and in vivo experiments were conducted, and the
results were compared with the classical sparse reconstruction method, L1-LS. Additionally, the
reconstruction performances were also compared with different organ segmentation methods,
including the accurate organ segmentation (manual segmentation), the fixed mean shape
segmentation, and the proposed organ probability map.

3.1. Simulation configuration

The 3D mouse model, Digimouse [34], is used for simulation. Performance of the proposed
reconstruction method is test by artificially placing tumor targets in different organs. The heart,
lung, liver, kidney, bone and soft tissue of the Digimouse are selected and regarded as the true
organ localization, as shown in Fig. 3(a). The organ probability map is established through
registration of the Digimouse to the statistical shape model. The mouse surface, bone and lung
are registered by fitting the statistical shape model for their high-contrast in CT image, then the
organ probability maps, such as the heart, liver and kidney are subsequently estimated from the
statistical shape model, as illustrated in Figs. 3(b-d).

Fig. 3. (a) The heterogeneous model of the Digimouse. (b∼d) Registration of the organ
probability map to the Digimouse. (e) The discretized mesh for generating multispectral
measurements.

To save computational efforts, only the torso part between the dish line, as shown in Fig. 3(a),
is cropped for meshing. Multispectral data at 590, 610, 630 and 650 nm are acquired for the
purpose of increasing the surface measurements and promoting the BLT reconstruction. To make
the simulation close to the real situation, the multispectral measurements are added with 5% of
white noises.

To test the performance of the proposed algorithm on organs with different optical parameters,
four simulation experiments are conducted with the sources located in the liver, kidney, abdomen
and lung, respectively. The simulated multispectral measurements are calculated by the SP3
method mentioned in Eq. (1) on a fine mesh discretized from the mouse torso with true
organ localization. As shown in Fig. 3(e), the mesh has ∼290,000 tetrahedron elements and
∼52,000 nodes, and the mean element edge size is 0.6mm. Then, the simulated multispectral
measurements and the cropped mouse torso with the organ probability map are used in the
following reconstruction.
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3.2. Simulation 1: light source in the liver

In this simulation, a sphere light source with a radius of 1.5 mm and the center coordinate of (16.6,
49.8, 8.3) mm is placed in the liver as shown in Figs. 4(a1∼a3). The mouse torso is discretized
into a mesh (∼150,000 tetrahedron elements and ∼27,000 nodes, and the mean element edge size
is 0.8mm) and the optical parameters of each node are assigned based on the organ probability
map as shown in Section 2.2. The mesh, the optical parameters and the simulated multispectral
measurements (calculated in Section 3.1) are used for BLT reconstruction.

Fig. 4. Reconstruction results of a single source in the liver. (a1) 3D rendering of the
true source distribution, and (a2, a3) the transverse and coronal views of the true source
overlapped with the CT images. (b1) 3D rendering of the L1-LS reconstruction result and
(b2, b3) the reconstruction result overlapped with the CT images. (c1) 3D rendering of the
two-step reconstruction result with the fixed mean shape segmentation, and (c2, c3) the
reconstruction result overlapped with the CT images. (d1) 3D rendering of the two-step
reconstruction result with the proposed organ probability map, and (d2, d3) the reconstruction
result overlapped with the CT images. All the BLT results are normalized to the maximum
value.

After reconstruction using the first-step of the proposed method, the normalized intensities of
each organ are: heart 0.014, liver 0.071, right kidney 0, left kidney 1.0, lung 0.026, born 0 and
soft tissue 0. So only the non-zero intensity organs (the heart, liver, left kidney and lung) are
selected for the second-step high-resolution reconstruction, and the final reconstructed results are
shown in Fig. 4(d1). The evaluation parameters have been shown in Table 2, the COM coordinate
is (16.8, 50.0, 8.0) mm, Doffset is 0.4mm, Dice is 0.71 and CNR is 81.7. The fusion of BLT
reconstruction and CT image is shown in Figs. 4(d2-d3). In contrast, the BLT reconstruction
with the same configuration but the L1-LS method is also performed, and the corresponding
results are shown in Figs. 4(b1-b3). The evaluation parameters of the L1-LS method are also
listed in Table 2 for comparing.

The BLT reconstruction with the two-step method but using the fixed mean shape segmentation
is shown in Figs.4(c1-c3). The quantitative comparison of reconstruction results with different
segmentation methods is listed in Table 3.

3.3. Simulation 2: light source in the kidney

In this simulation, a sphere light source (1.5 mm radius and center at (25.0, 41.1, 14.0) mm)
is placed in the kidney, as shown in Figs. 5(a1-a3). The torso part is discretized into a mesh
(∼170,000 tetrahedron elements and ∼31,000 nodes, and the mean element edge size is 0.8mm)
and the optical parameters of each node are assigned based on the organ probability map as shown
in Section 2.2. The mesh, the optical parameters and the simulated multispectral measurements
are used for BLT reconstruction.

After reconstruction using the first-step of the proposed method, the normalized intensities
of each organ are: heart 0, liver 0, right kidney 1.0, left kidney 0.267, lung 0, bone 0.006 and
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Table 2. Quantitative comparison of the reconstruction results based on the proposed two-step
method and the L1-LS method

Case Actual source center Algorithm COM of the reconstructed source Doffset (mm) Dice CNR

1 (16.6, 49.8, 8.3)
L1-LS (16.4, 50.4, 7.7) 0.9 0.21 8.1

L1-LS+SBL (16.8, 50.0, 8.0) 0.4 0.71 81.7

2 (25.0, 41.1, 14.0)
L1-LS (24.0, 40.8, 14.0) 1.0 0.23 26.4

L1-LS+SBL (24.4, 41.3, 13.9) 0.7 0.57 337.3

3 (9.3, 32.6, 7.8)
L1-LS (10.2, 33.6, 8.1) 1.4 0.33 2.8

L1-LS+SBL (9.6, 32.7, 7.8) 0.3 0.72 103.7

4

(16.7, 56.9, 13.0) L1-LS
(16.5, 57.3, 13.2) 0.3

0.39 15.9
(23.7, 57.3, 11.5) 0.8

(23.2, 56.9, 11.0) L1-LS+SBL
(16.8, 57.0, 13.0) 0.1

0.79 201.7
(23.2, 56.9, 11.0) 0.1

Table 3. Quantitative comparison of the reconstruction results with different segmentation
methods

Case
Accurate organ segmentation Fixed mean shape segmentation Proposed segmentation

CoM offset (mm) Dice CoM offset (mm) Dice CoM offset (mm) Dice

1 0.3 0.67 0.5 0.73 0.4 0.71

2 0.4 0.73 0.6 0.63 0.7 0.57

3 0.3 0.72 0.4 0.58 0.3 0.72

4 0.1/0.3 0.80 0.5/0.5 0.70 0.1/0.1 0.79

Fig. 5. Reconstruction results of a single source in the kidney. (a1) 3D rendering of the
true source distribution, and (a2, a3) the transverse and coronal views of the true source
overlapped with the CT images. (b1) 3D rendering of the L1-LS reconstruction result and
(b2, b3) the reconstruction result overlapped with the CT images. (c1) 3D rendering of the
two-step reconstruction result with the fixed mean shape segmentation, and (c2, c3) the
reconstruction result overlapped with the CT images. (d1) 3D rendering of the two-step
reconstruction result with the proposed organ probability map, and (d2, d3) the reconstruction
result overlapped with the CT images. All the BLT results are normalized to the maximum
value.
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soft tissue 0. So only the non-zero intensity organs (the right kidney, left kidney and bone) are
selected for the second-step high-resolution reconstruction, and the final reconstructed results are
shown in Fig. 5(d1). The COM coordinate is (24.4, 41.3, 13.9) mm, Doffset is 0.7mm, and the
Dice is 0.57 and CNR is 337.3. The fusion of BLT reconstruction and CT image is shown in
Figs. 5(d2-d3).

In contrast, the BLT reconstruction with the same configuration but the L1-LS method is also
performed, and the corresponding results are shown in Figs. 5(b1-b3). The evaluation parameters
of L1-LS method are also listed in Table 2 for comparison.

The BLT reconstruction with the two-step method but using the fixed mean shape segmentation
is shown in Figs.5(c1-c3). The quantitative comparison of reconstruction results with different
segmentation methods is listed in Table 3.

3.4. Simulation 3: light source in the abdomen

In this simulation, a sphere light source is placed in the abdomen, as shown in Figs. 6(a1-a3).
The torso part was discretized into a mesh (∼170,000 tetrahedron elements and ∼31,000 nodes,
and the mean element edge size is 0.8mm) for BLT reconstruction.

Fig. 6. Reconstruction results of a single source in the abdomen. (a1) 3D rendering of the
true source distribution, and (a2, a3) the transverse and coronal views of the true source
overlapped with the CT images. (b1) 3D rendering of the L1-LS reconstruction result and
(b2, b3) the reconstruction result overlapped with the CT images. (c1) 3D rendering of the
two-step reconstruction result with the fixed mean shape segmentation, and (c2, c3) the
reconstruction result overlapped with the CT images. (d1) 3D rendering of the two-step
reconstruction result with the proposed organ probability map, and (d2, d3) the reconstruction
result overlapped with the CT images. All the BLT results are normalized to the maximum
value.

After reconstruction using the first-step of the proposed method, the normalized intensities of
each organ are: heart 0, liver 0, right kidney 1.0, left kidney 0, lung 0, bone 0 and soft tissue
0.13. Then only the non-zero intensity organs (the right kidney and abdomen) are selected for
the second-step high-resolution reconstruction, and the final reconstructed results are shown in
Fig. 6(d1). The COM coordinate is (9.6, 32.7, 7.8) mm, Doffset is 0.3mm, the Dice is 0.72 and
the CNR is 103.7. The fusion of BLT reconstruction and CT image is shown in Figs. 6(d2-d3).
Figure 6(b1) is the BLT reconstruction based on the L1-LS method, and the corresponding fusion
of BLT reconstruction and CT image is shown in Figs. 6(b2-b3). The evaluation parameters of
L1-LS method are also saved in Table 2 for comparison.

The BLT reconstruction with the two-step method but using the fixed mean shape segmentation
is shown in Figs.6(c1-c3). The quantitative comparison of reconstruction results with different
segmentation methods is listed in Table 3.
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3.5. Simulation 4: double light sources in the lungs

In this simulation, two sphere light sources (1.5 mm radius and the centers are (16.7, 56.9, 13.0)
mm and (23.2, 56.9, 11.0) mm) are placed in the lungs, as shown in Figs. 7(a1-a5). The torso
part was discretized into a mesh of ∼110,000 tetrahedron elements and ∼21,000 nodes for BLT
reconstruction with the mean element edge size is 0.8mm. With the proposed reconstruction
method, the mean intensities of each organ after the first-step are: heart 0, liver 1.74e-5, right
kidney 0, left kidney 1.0, lung 8.74e-5, bone 0 and soft tissue 1.77e-6. Then only the non-zero
intensity organs (the liver, left kidney, lungs and the soft tissue) are selected for the second-step
high-resolution reconstruction, and the final reconstructed results are shown in Fig. 7(d1). The
fusion of BLT reconstruction and CT image is shown in Figs. 7(d2-d5). For comparison, the BLT
reconstruction with the same configuration but the L1-LS method is also performed, and the
corresponding results are shown in Figs. 7(b1-b5). The evaluation parameters of two methods
were also save in Table 2 for comparison.

Fig. 7. Reconstruction results of double sources in the lungs. (a1) 3D rendering of the
true source distribution, and (a2, a3) the transverse and coronal views of the true source
overlapped with the CT images. (b1) 3D rendering of the L1-LS reconstruction result and
(b2, b3) the reconstruction result overlapped with the CT images. (c1) 3D rendering of the
two-step reconstruction result with the fixed mean shape segmentation, and (c2, c3) the
reconstruction result overlapped with the CT images. (d1) 3D rendering of the two-step
reconstruction result with the proposed organ probability map, and (d2, d3) the reconstruction
result overlapped with the CT images. All the BLT results are normalized to the maximum
value.

The BLT reconstruction with the two-step method but using the fixed mean shape segmentation
is shown in Figs.7(c1-c5). The quantitative comparison of reconstruction results with different
segmentation methods is listed in Table 3.

3.6. In vivo experiments

To further test the performance of the proposed method, a group of in vivo experiments have
been conducted in the BLT/CBCT system [35]. A bioluminescence source (a cylinder with 0.9
mm diameter and 2 mm length, Trigalight, mb-microtecag, Switzerland) is placed in abdomen
though surgery when the mouse is anesthetized. The mouse is taped on the animal stage in supine
position for imaging. Multispectral measurements at 590, 610, 630, 650 nm are acquired with
CCD camera. The CT data is collected by CBCT system, and the exact position of the light
source can be localized because its high contrast in CT image.

Due to the low-contrast of soft tissue, the organs such as liver and kidney are difficult to
distinguish. The mouse surface and the high contrast organs (the bone, heart and lung) are
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quickly segmented through thresholding. After registering with the statistical mouse atlas, the
organ probability map is established using the method described in Section 2.2 and is shown in
Figs. 8(a1-a3). After segmentation, the optical parameter of each organ is calculated with Eq. (4).

Fig. 8. Reconstruction results of the in vivo experiments. (a1-a3) Registration of the organ
probability map to the mouse CT image. (b1) Surface optical signals collected during the
experiment, and (b2) the surface optical signal distribution on the discretized mesh. (c1) 3D
rendering of the reconstruction result using the proposed two-step method, and (c2, c3) the
coronal and transverse views of the overlapped BLT and CT images. (d1) 3D rendering of
the reconstruction result using the L1-LS method, and (d2, d3) the coronal and transverse
views of the overlapped images. All the BLT results are normalized to the maximum value.

A section of the mouse torso is cropped from the CBCT image and is discretized into a 3D
tetrahedral mesh (including ∼97,000 tetrahedron elements and ∼18,000 nodes, and the mean
element edge size is 0.8mm) for BLT reconstruction. The multispectral BLIs are then mapped on
the mesh surface, as shown in Fig. 8(b2). With the proposed two-step reconstruction method, the
normalized mean intensities of each organ after the first-step are: heart 0, liver 0, right kidney
1.0, left kidney 0, lung 0, bone 0, abdomen 0.012. Then only the non-zero intensity organs (the
right kidney and the soft tissue) are selected for the second-step high-resolution reconstruction,
and the final reconstructed results are shown in Fig. 8(c1). The center of the source is (8.7, 28.2,
2.1) mm, and the COM of reconstructed source is (9.1, 27.9, 1.5) mm, so the Doffset is 0.84 mm.
The fusion of BLT reconstruction and CT image is shown in Figs. 8(c2-c3). For comparison, the
3D distribution of the reconstructed source based on the L1-LS method is also calculated and
shown in Fig. 8(d1). The corresponding COM is (9.2, 28.4, 3.1) mm, and the Doffset is 1.16 mm.
The fusion of BLT reconstruction and CT image is shown in Figs. 8(d2-d3).

4. Discussion

BLT reconstruction in conjunction with heterogeneous structure information can provide more
accurate results than the homogeneous model [6,36,37]. Micro-CT is widely adopted in the
multimodal BLT system to provide anatomic structure, but the segmentation of soft tissue is a
challenging problem for its low contrast in CT image when contrast enhancement is absent. In this
paper, the organ probability map is established to facilitate soft tissue organ segmentation of the
mouse CT images. By registering the statistical shape model to the high-contrast organs (surface,
bone and lung) of the CT images, the low-contract organs could be effectively segmented, which
can be served as an anatomical information for BLT reconstruction and alleviate the ill-posedness
of inverse solution. The feasibility of the organ probability maps in conjunction with the BLT
reconstruction method is estimated through simulation and in vivo experiments.
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Different from our previous work [20] in which the shapes of the low-contrast organs are
estimated using the mean value from the statistical mouse atlas, in this paper, the organ probability
map of the low-contrast organ is established. Because our statistical mouse atlas is constructed
using 103 mice of different sexes, strains, weights and postures, and in combination with the
conditional Gaussian model, so it is charactered with the capability of capturing the inter-subject
and inter-organ shape variations [18,19]. So, the organ probability map is more appropriate for
compensating anatomical variations comparing with the fixed mean shape.

With the organ probability map, the optical property map of different organs is built as shown
in Section 2.2 and Fig. 1. Therefore, the structural information in mouse CT image is efficiently
adopted. Besides, we developed a two-step method for BLT reconstruction. In the first step, the
structural information is utilized to confine the solution in a low dimensional domain and the
mean intensity of each organ is reconstructed based on a classical sparse method L1-LS. In the
second step, the high-resolution 3D distribution of the bioluminescence source is reconstructed
using the sparse Bayesian learning method.

Four simulation experiments, from different position and number of the light source, were
conducted to test the performance of the proposed method. As illustrated in Section 3.2-3.5, we
can see that: (1) the mean Doffset of the proposed method is 0.32mm and it is significantly smaller
than that of the L1-LS method (0.72 mm), which means that the 3D of the localization of the
reconstructed source is more accurate based on the proposed two-step method than that of the
classical L1-LS method; (2) the mean Dice of proposed two-step reconstruction method (0.70) is
much larger than that of the L1-LS method (0.29), which means that the size of reconstructed
source is closer to the true source based on the proposed two-step method than that of the classical
L1-LS method; and (3) the mean CNR of reconstructed image based on the proposed two-step
method (181.1) is much better than that of the L1-LS method (13.3).

Additionally, the BLT reconstruction performances with different organ segmentation methods,
including the accurate organ segmentation (manual segmentation), the fixed mean shape
segmentation and the proposed organ probability map, were shown in Table 3 and Figs. 4–7.
From the quantitative comparison shown in Table 3, it is notable that the CoM and Dice of the
reconstruction using the proposed organ probability map are closer to those using the accurate
organ segmentation, and superior to those results reconstructed using the fixed mean shape.

Meanwhile, as shown in Fig. 4(b1), Fig. 5(b1), Fig. 6(b1) and Fig. 7(b1), the reconstructed
images are contaminated with noticeable noise when reconstructed using the L1-LS method. In
contrast, the proposed two-step reconstruction method can greatly suppress noise signal, as shown
in Fig. 4(d1), Fig. 5(d1), Fig. 6(d1) and Fig. 7(d1). Additionally, in vivo experiments were carried
out to verify the feasibility of the proposed method. As illustrated in Fig. 8, the performance of
the proposed two-step reconstruction method is superior to the L1-LS method in terms of the
size of reconstructed source, the 3D COM offset and the image quality, which is consistent with
the observation of the simulation results. The simulation and in vivo experiments indicate that
the proposed method can reconstruct the bioluminescent source more accurate than the classical
L1-LS method. In simulations the kidney is always selected after the first-step reconstruction,
even the source was far away from kidneys. This is mainly because the segmented kidney from
the organ probability map has noticeable deviation from the ground truth. The mismatch of
optical parameters would bias the first-step reconstruction. With the second-step, the target could
be reconstructed accurately. The computation time for the simulation and mouse experiments
was all less than 3 minutes for the two-step BLT reconstruction using a 64-bit desktop with an
Intel i7-9700K CPU 3.60GHz processor and 32 GB of memory.

There are some aspects which are not considered in this paper. First, the shape of the source
is concentrated as a small sphere which is a special case in real situation. Therefore, more
experiments containing different shapes should be carried out to fully verify the effectiveness of
the proposed algorithm in the future work.
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Second, many other sparse regularization methods [38–41], such as L2,1 and Lp norm
regularization, have shown great potential in effectively solving the ill-posed BLT reconstruction
problem. The purpose of this paper is to show the effectiveness of organ probability map in
conjunction with the two-step BLT reconstruction method, rather than comprehensive comparison,
so only the classical L1-LS method is adopted for comparison. Additionally, it is possible to
replace the algorithms used in the paper to achieve two-step reconstruction, especially the L1-LS
used in the first step.

Besides, the deep learning related methods have been widely used and become dominant in
field of medical imaging. Recently, researchers have utilized the multilayer perceptron [42] and
one-dimensional convolutional neural network [43] to solve the BLT reconstruction problem, and
the results are promising over the traditional methods. Taking the advantage of the deep learning
strategy to further improve the BLT reconstruction quality will be concerned in the future.

Last, in the in vivo study, a small Trigalight light source is placed into the abdomen of the
mouse to evaluate the performance of the proposed method, which has high contrast in CT image
and can be located accurately as reference for algorithm development. We only analyzed the
localization accuracy of the target, the quantification of the bioluminescence, which is essential
in biological research as well, is not considered here and will be studied in our future work.

5. Conclusion

In this study, the organ probability map in conjunction with a two-step BLT reconstruction method
is presented and estimated through simulation and in vivo experiments. The organ probability
map is established by registering with the statistical mouse atlas, and could effectively reveal the
low-contrast organs in CT images which are difficult to segment. The heterogeneous model with
appropriate optical parameters is built for reconstruction. Then a two-step method is presented
for reconstructing the 3D distribution of the bioluminescence source. The simulation and in
vivo experiments have demonstrated the feasibility of the proposed algorithm. The developed
two-step method in conjunction with the organ probability map for BLT reconstruction combines
L1 regularization and SBL algorithm and takes the advantages of priori information, significantly
alleviating the ill-posedness of BLT reconstruction and improving the quality of the results.
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